Chemical activators of SLC17A2 can engage in various biochemical pathways to upregulate the protein's function. Verapamil, for instance, serves as a calcium channel blocker, leading to an increase in intracellular calcium levels, which is a key activator of SLC17A2, as it promotes the fusion of vesicles, an essential step in the protein's function. Similarly, the tyrosine kinase inhibitor Genistein can enhance SLC17A2 activity by preventing the dephosphorylation of proteins associated with it, thus maintaining SLC17A2 in a more active state. Forskolin, by increasing cAMP levels, indirectly stimulates SLC17A2 through the activation of protein kinase A, which can phosphorylate SLC17A2, thereby increasing its activity. Another agent, Phorbol 12-myristate 13-acetate (PMA), activates protein kinase C, which then phosphorylates SLC17A2, leading to enhanced activity of the protein.
Ionomycin functions by elevating intracellular calcium concentration, triggering calcium-dependent signaling pathways that activate SLC17A2. Monensin, an ionophore, alters intracellular ion concentrations, which in turn can activate SLC17A2 by modifying ion gradients that are crucial for the protein's activity. Brefeldin A disrupts the Golgi apparatus, causing SLC17A2 to redistribute to the plasma membrane where it becomes more active. N6-Cyclopentyladenosine, by stimulating adenosine A1 receptors, can enhance SLC17A2 activity through G protein-coupled receptor signaling pathways. Zinc Pyrithione increases the intracellular concentration of zinc, a metal ion that activates SLC17A2 through specific sensing pathways. Nicotinic Acid, as a precursor to NAD+, participates in redox reactions and energy metabolism that can lead to SLC17A2 activation. Guanfacine, an α2A-adrenergic receptor agonist, activates SLC17A2 through associated G protein-coupled receptor-mediated signaling. Lastly, Bay K 8644, as an L-type calcium channel agonist, directly increases calcium influx, which is a crucial activator of SLC17A2. Each of these chemicals, through their unique mechanisms, can serve to enhance the functional activity of SLC17A2 within cellular processes.
SEE ALSO...
Items 1 to 10 of 12 total
Display:
| Product Name | CAS # | Catalog # | QUANTITY | Price | Citations | RATING |
|---|---|---|---|---|---|---|
Verapamil | 52-53-9 | sc-507373 | 1 g | $367.00 | ||
Verapamil, a calcium channel blocker, increases intracellular calcium levels, which activates SLC17A2 by promoting vesicle fusion. | ||||||
Genistein | 446-72-0 | sc-3515 sc-3515A sc-3515B sc-3515C sc-3515D sc-3515E sc-3515F | 100 mg 500 mg 1 g 5 g 10 g 25 g 100 g | $26.00 $92.00 $120.00 $310.00 $500.00 $908.00 $1821.00 | 46 | |
Genistein, a tyrosine kinase inhibitor, enhances the activity of SLC17A2 by inhibiting the dephosphorylation of associated proteins, favoring its active state. | ||||||
Forskolin | 66575-29-9 | sc-3562 sc-3562A sc-3562B sc-3562C sc-3562D | 5 mg 50 mg 1 g 2 g 5 g | $76.00 $150.00 $725.00 $1385.00 $2050.00 | 73 | |
Forskolin raises cAMP levels, which activates protein kinase A (PKA), and PKA phosphorylates SLC17A2, enhancing its activity. | ||||||
PMA | 16561-29-8 | sc-3576 sc-3576A sc-3576B sc-3576C sc-3576D | 1 mg 5 mg 10 mg 25 mg 100 mg | $40.00 $129.00 $210.00 $490.00 $929.00 | 119 | |
PMA activates protein kinase C (PKC), and PKC-mediated phosphorylation leads to SLC17A2 activation. | ||||||
Ionomycin | 56092-82-1 | sc-3592 sc-3592A | 1 mg 5 mg | $76.00 $265.00 | 80 | |
Ionomycin increases intracellular calcium concentration, which can activate SLC17A2 through calcium-dependent signaling pathways. | ||||||
Monensin A | 17090-79-8 | sc-362032 sc-362032A | 5 mg 25 mg | $152.00 $515.00 | ||
Monensin acts as an ionophore that alters intracellular ion concentrations, thus activating SLC17A2 by modifying the ion gradient. | ||||||
Brefeldin A | 20350-15-6 | sc-200861C sc-200861 sc-200861A sc-200861B | 1 mg 5 mg 25 mg 100 mg | $30.00 $52.00 $122.00 $367.00 | 25 | |
Brefeldin A disrupts Golgi function, which can lead to the redistribution of SLC17A2 to the plasma membrane, increasing its activity. | ||||||
N6-Cyclopentyladenosine | 41552-82-3 | sc-204117 | 50 mg | $120.00 | 2 | |
This adenosine A1 receptor agonist can enhance the activity of SLC17A2 through G protein-coupled receptor signaling pathways. | ||||||
Zinc | 7440-66-6 | sc-213177 | 100 g | $47.00 | ||
Zinc Pyrithione can increase intracellular zinc concentration, which is known to activate SLC17A2 through metal ion sensing pathways. | ||||||
Nicotinic Acid | 59-67-6 | sc-205768 sc-205768A | 250 g 500 g | $61.00 $122.00 | 1 | |
Nicotinic Acid, by acting as a precursor of NAD+, can enhance the activity of SLC17A2 through redox reactions and energy metabolism. | ||||||