DAPLE activators belong to a specialized category of chemical agents that interact with the protein known as DAPLE. DAPLE, an acronym for Dishevelled-Associated Protein with a High Frequency of Leucine Residues, is an integral part of the cellular signaling pathways. It plays a crucial role in the modulation of Wnt signaling cascades, which are essential for various cellular processes. The Wnt signaling pathways have been extensively studied due to their importance in cell fate determination, migration, polarity, and organogenesis. DAPLE activators exert their influence by binding to this protein and affecting its activity, thereby impacting the downstream effects of the Wnt signaling pathways. By doing so, these chemical agents can alter the dynamics of cellular communication and intracellular signaling, which are pivotal for maintaining cellular homeostasis and function.
The chemical structure of DAPLE activators is diverse, with each activator having unique molecular features that enable it to interact with the DAPLE protein. The interaction between DAPLE activators and the DAPLE protein is highly specific, involving precise molecular recognition and binding. This specificity is attributed to the unique conformational structures that DAPLE activators adopt, which complement the binding sites on the DAPLE protein. The exact nature of these interactions can vary, but they often involve the formation of hydrogen bonds, hydrophobic interactions, and van der Waals forces, which collectively contribute to the stability and specificity of the binding.
SEE ALSO...
Items 1 to 10 of 11 total
Display:
Product Name | CAS # | Catalog # | QUANTITY | Price | Citations | RATING |
---|---|---|---|---|---|---|
Retinoic Acid, all trans | 302-79-4 | sc-200898 sc-200898A sc-200898B sc-200898C | 500 mg 5 g 10 g 100 g | $65.00 $319.00 $575.00 $998.00 | 28 | |
Retinoic Acid engages with retinoic acid receptors, which can migrate to the nucleus and interact with specific promoter regions, potentially stimulating the transcription of the DAPLE gene. | ||||||
5-Azacytidine | 320-67-2 | sc-221003 | 500 mg | $280.00 | 4 | |
5-Azacytidine, a DNA methyltransferase inhibitor, could potentially promote DAPLE expression by demethylating the promoter region of the DAPLE gene, thereby facilitating transcription. | ||||||
β-Estradiol | 50-28-2 | sc-204431 sc-204431A | 500 mg 5 g | $62.00 $178.00 | 8 | |
β-Estradiol acts through estrogen receptors that can bind to specific DNA sequences. This interaction could potentially stimulate the transcription machinery to upregulate DAPLE expression. | ||||||
Sodium Butyrate | 156-54-7 | sc-202341 sc-202341B sc-202341A sc-202341C | 250 mg 5 g 25 g 500 g | $30.00 $46.00 $82.00 $218.00 | 19 | |
Sodium butyrate inhibits histone deacetylase, potentially promoting acetylation and thus loosening the chromatin structure around the DAPLE gene, making it more accessible for the transcription machinery. | ||||||
Trichostatin A | 58880-19-6 | sc-3511 sc-3511A sc-3511B sc-3511C sc-3511D | 1 mg 5 mg 10 mg 25 mg 50 mg | $149.00 $470.00 $620.00 $1199.00 $2090.00 | 33 | |
Trichostatin A, another histone deacetylase inhibitor, could potentially increase DAPLE gene transcription by promoting a more permissive chromatin state through increased histone acetylation. | ||||||
Forskolin | 66575-29-9 | sc-3562 sc-3562A sc-3562B sc-3562C sc-3562D | 5 mg 50 mg 1 g 2 g 5 g | $76.00 $150.00 $725.00 $1385.00 $2050.00 | 73 | |
Forskolin activates adenylate cyclase, raising cellular cAMP levels, which may lead to the activation of PKA-dependent transcription factors that could interact with the DAPLE gene and stimulate its expression. | ||||||
Rottlerin | 82-08-6 | sc-3550 sc-3550B sc-3550A sc-3550C sc-3550D sc-3550E | 10 mg 25 mg 50 mg 1 g 5 g 20 g | $82.00 $163.00 $296.00 $2050.00 $5110.00 $16330.00 | 51 | |
Rottlerin, a PKC inhibitor, could potentially stimulate DAPLE expression by altering the PKC-dependent signalling pathways, which may then interact with the transcription factors responsible for DAPLE expression. | ||||||
Genistein | 446-72-0 | sc-3515 sc-3515A sc-3515B sc-3515C sc-3515D sc-3515E sc-3515F | 100 mg 500 mg 1 g 5 g 10 g 25 g 100 g | $26.00 $92.00 $120.00 $310.00 $500.00 $908.00 $1821.00 | 46 | |
Genistein, a tyrosine kinase inhibitor and phytoestrogen, could potentially upregulate DAPLE expression by altering the tyrosine kinase signalling pathways or estrogen receptor activity that are critical for DAPLE transcription. | ||||||
Resveratrol | 501-36-0 | sc-200808 sc-200808A sc-200808B | 100 mg 500 mg 5 g | $60.00 $185.00 $365.00 | 64 | |
Resveratrol could potentially stimulate DAPLE expression by activating sirtuins, a class of proteins that can affect chromatin structure and consequently the transcription of DAPLE. | ||||||
Curcumin | 458-37-7 | sc-200509 sc-200509A sc-200509B sc-200509C sc-200509D sc-200509F sc-200509E | 1 g 5 g 25 g 100 g 250 g 1 kg 2.5 kg | $36.00 $68.00 $107.00 $214.00 $234.00 $862.00 $1968.00 | 47 | |
Curcumin could potentially increase DAPLE expression by inhibiting NF-kB, a transcription factor that may interact with the promoter region of the DAPLE gene. |