Chemical activators of PTPy engage with the protein in various ways to enhance its phosphatase activity, each employing a distinct mechanism of action that results in the functional activation of PTPy. Zinc Pyrithione, for example, can bind directly to PTPy, leading to an alteration in the oxidation state of the protein, which in turn activates its phosphatase function. Similarly, Sodium Orthovanadate, although commonly known to inhibit phosphatases, can paradoxically lead to the activation of PTPy. This occurs through a mechanism where the inhibitor prevents dephosphorylation, thereby leading to an active state of PTPy. Hydrogen Peroxide is another activator that oxidizes cysteine residues on PTPy, inducing a conformational change and subsequent activation of the protein's phosphatase activity.
Moreover, compounds like Peroxovanadium mimic the transition state of phosphate esters, which stabilizes the active form of PTPy, leading to its activation. Dithiothreitol reduces disulfide bonds within PTPy, which exposes the active site and activates the enzyme's function. Phenylarsine Oxide promotes the activation of PTPy by binding to vicinal thiols, inducing dimerization or conformational changes that result in the activation of its enzymatic activity. Other chemicals such as Lead (II) Acetate, p-Hydroxymercuribenzoate, Tellurite, and Thimerosal can bind to PTPy and induce conformational changes that activate the enzyme. Specifically, Tellurite and Thimerosal interact with the thiol groups of PTPy, leading to structural modifications that enable phosphatase activity. Nonivamide, through its activation of transient receptor potential cation channels, initiates cellular responses that can activate PTPy. Lastly, Cantharidin, by inhibiting serine/threonine phosphatases, can lead to a compensatory activation of PTPy, ensuring that the balance of phosphatase activity within the cell is maintained. Each of these chemicals activates PTPy through direct binding or the initiation of cellular processes that result in the functional activation of the protein's phosphatase activity.
VOIR ÉGALEMENT...
| Nom du produit | CAS # | Ref. Catalogue | Quantité | Prix HT | CITATIONS | Classement |
|---|---|---|---|---|---|---|
Zinc | 7440-66-6 | sc-213177 | 100 g | $47.00 | ||
La pyrithione de zinc se lie à la PTPy, entraînant une modification de son état d'oxydation, ce qui se traduit par l'activation de son activité phosphatase. | ||||||
Sodium Orthovanadate | 13721-39-6 | sc-3540 sc-3540B sc-3540A | 5 g 10 g 50 g | $45.00 $56.00 $183.00 | 142 | |
L'orthovanadate de sodium agit comme un inhibiteur de la phosphatase qui peut paradoxalement conduire à l'activation de la PTPy en empêchant sa déphosphorylation. | ||||||
Hydrogen Peroxide | 7722-84-1 | sc-203336 sc-203336A sc-203336B | 100 ml 500 ml 3.8 L | $30.00 $60.00 $93.00 | 27 | |
Le peroxyde d'hydrogène oxyde les résidus cystéine de la PTPy, ce qui peut entraîner un changement de conformation qui active son activité phosphatase. | ||||||
Phenylarsine oxide | 637-03-6 | sc-3521 | 250 mg | $40.00 | 4 | |
L'oxyde de phénylarsine se lie aux thiols vicinaux de la PTPy, favorisant la dimérisation ou les changements de conformation qui entraînent l'activation de son activité enzymatique. | ||||||
Lead(II) Acetate | 301-04-2 | sc-507473 | 5 g | $83.00 | ||
L'acétate de plomb (II) peut se lier à la PTPy, ce qui peut induire un changement de conformation renforçant son activité phosphatase. | ||||||
Cantharidin | 56-25-7 | sc-201321 sc-201321A | 25 mg 100 mg | $81.00 $260.00 | 6 | |
La cantharidine inhibe les sérine/thréonine phosphatases, ce qui peut entraîner une activation compensatoire de la PTPy pour maintenir l'équilibre de l'activité des phosphatases. | ||||||