Chemical activators of PTPy engage with the protein in various ways to enhance its phosphatase activity, each employing a distinct mechanism of action that results in the functional activation of PTPy. Zinc Pyrithione, for example, can bind directly to PTPy, leading to an alteration in the oxidation state of the protein, which in turn activates its phosphatase function. Similarly, Sodium Orthovanadate, although commonly known to inhibit phosphatases, can paradoxically lead to the activation of PTPy. This occurs through a mechanism where the inhibitor prevents dephosphorylation, thereby leading to an active state of PTPy. Hydrogen Peroxide is another activator that oxidizes cysteine residues on PTPy, inducing a conformational change and subsequent activation of the protein's phosphatase activity.
Moreover, compounds like Peroxovanadium mimic the transition state of phosphate esters, which stabilizes the active form of PTPy, leading to its activation. Dithiothreitol reduces disulfide bonds within PTPy, which exposes the active site and activates the enzyme's function. Phenylarsine Oxide promotes the activation of PTPy by binding to vicinal thiols, inducing dimerization or conformational changes that result in the activation of its enzymatic activity. Other chemicals such as Lead (II) Acetate, p-Hydroxymercuribenzoate, Tellurite, and Thimerosal can bind to PTPy and induce conformational changes that activate the enzyme. Specifically, Tellurite and Thimerosal interact with the thiol groups of PTPy, leading to structural modifications that enable phosphatase activity. Nonivamide, through its activation of transient receptor potential cation channels, initiates cellular responses that can activate PTPy. Lastly, Cantharidin, by inhibiting serine/threonine phosphatases, can lead to a compensatory activation of PTPy, ensuring that the balance of phosphatase activity within the cell is maintained. Each of these chemicals activates PTPy through direct binding or the initiation of cellular processes that result in the functional activation of the protein's phosphatase activity.
Siehe auch...
Produkt | CAS # | Katalog # | Menge | Preis | Referenzen | Bewertung |
---|---|---|---|---|---|---|
Zinc | 7440-66-6 | sc-213177 | 100 g | $47.00 | ||
Zinkpyrithion bindet PTPy, was zu einer Änderung seines Oxidationszustands führt, was wiederum die Aktivierung seiner Phosphataseaktivität bewirkt. | ||||||
Sodium Orthovanadate | 13721-39-6 | sc-3540 sc-3540B sc-3540A | 5 g 10 g 50 g | $45.00 $56.00 $183.00 | 142 | |
Natriumorthovanadat wirkt als Phosphataseinhibitor, der paradoxerweise zur Aktivierung von PTPy führen kann, indem er dessen Dephosphorylierung verhindert. | ||||||
Hydrogen Peroxide | 7722-84-1 | sc-203336 sc-203336A sc-203336B | 100 ml 500 ml 3.8 L | $30.00 $60.00 $93.00 | 27 | |
Wasserstoffperoxid oxidiert die Cysteinreste in PTPy, was zu einer Konformationsänderung führen kann, die seine Phosphataseaktivität aktiviert. | ||||||
Phenylarsine oxide | 637-03-6 | sc-3521 | 250 mg | $40.00 | 4 | |
Phenylarsin-Oxid bindet an die vicinalen Thiole in PTPy und fördert die Dimerisierung oder Konformationsänderungen, die zur Aktivierung der enzymatischen Aktivität führen. | ||||||
Lead(II) Acetate | 301-04-2 | sc-507473 | 5 g | $83.00 | ||
Blei(II)-acetat kann an PTPy binden, was zu einer Konformationsänderung führen kann, die seine Phosphataseaktivität erhöht. | ||||||
Cantharidin | 56-25-7 | sc-201321 sc-201321A | 25 mg 100 mg | $81.00 $260.00 | 6 | |
Cantharidin hemmt Serin/Threonin-Phosphatasen, was zu einer kompensatorischen Aktivierung von PTPy führen kann, um die Phosphataseaktivität im Gleichgewicht zu halten. |