SEE ALSO...
Items 351 to 360 of 453 total
Display:
| Product Name | CAS # | Catalog # | QUANTITY | Price | Citations | RATING |
|---|---|---|---|---|---|---|
BRD9539 | 1374601-41-8 | sc-492598 | 5 mg | $86.00 | ||
BRD9539 functions as a potent enzyme modulator, exhibiting unique interactions that influence substrate binding and catalytic activity. Its distinct molecular structure allows for selective engagement with specific active sites, altering reaction kinetics and enhancing or inhibiting enzymatic pathways. The compound's ability to stabilize transient enzyme conformations can lead to significant shifts in metabolic processes, showcasing its role in fine-tuning enzymatic regulation and efficiency. | ||||||
8-Azaadenine | 1123-54-2 | sc-214416 | 1 g | $339.00 | ||
8-Azaadenine serves as a versatile enzyme cofactor, participating in critical biochemical pathways through its unique nitrogenous base structure. Its ability to form hydrogen bonds and engage in π-π stacking interactions enhances its affinity for enzyme active sites, facilitating substrate recognition. This compound can modulate enzyme stability and conformational dynamics, impacting reaction rates and influencing metabolic flux, thereby playing a crucial role in cellular regulation. | ||||||
(S)-2-Amino-5-oxo-hexanoic Acid, Hydrobromide | 1217856-43-3 | sc-220051 | 50 mg | $360.00 | ||
(S)-2-Amino-5-oxo-hexanoic Acid, Hydrobromide acts as a key enzyme modulator, influencing metabolic pathways through its unique structural features. Its carboxylic acid group enables strong ionic interactions with enzyme active sites, enhancing substrate binding. The compound's ability to participate in hydrogen bonding and its steric configuration can alter enzyme kinetics, promoting specific reaction pathways and affecting overall catalytic efficiency in biochemical processes. | ||||||
PYR 41 | 418805-02-4 | sc-362786 sc-362786A | 5 mg 25 mg | $72.00 $153.00 | 1 | |
PYR 41 functions as a potent enzyme modulator, characterized by its ability to interact with key amino acid residues within enzyme active sites. Its unique structural features facilitate the formation of transient complexes, enhancing substrate orientation and promoting efficient catalysis. Additionally, PYR 41 influences enzyme conformational dynamics, leading to altered reaction kinetics and improved turnover rates, thereby impacting various biochemical pathways with precision. | ||||||
Dimethyldioctylammonium Bromide | 3026-69-5 | sc-294358 sc-294358A | 5 g 25 g | $228.00 $678.00 | ||
Dimethyldioctylammonium Bromide exhibits enzyme-like behavior through its amphiphilic nature, which promotes the formation of micelles that enhance substrate solubility and accessibility. Its quaternary ammonium structure allows for strong electrostatic interactions with negatively charged substrates, facilitating rapid binding. The compound's unique hydrophobic interactions contribute to the stabilization of enzyme-substrate complexes, optimizing reaction rates and influencing catalytic efficiency in various biochemical pathways. | ||||||
Hexadecyltrimethylammonium Perchlorate | 6941-37-3 | sc-295147 | 1 g | $345.00 | ||
Hexadecyltrimethylammonium Perchlorate functions as a versatile enzyme modulator, characterized by its long hydrophobic alkyl chain that enhances membrane permeability and substrate binding. This compound exhibits unique ionic interactions that stabilize enzyme-substrate complexes, promoting efficient catalytic turnover. Its quaternary ammonium structure influences the enzyme's conformational dynamics, potentially altering reaction pathways and enhancing overall enzymatic efficiency in diverse biochemical contexts. | ||||||
Tetrabutylammonium Salicylate | 22307-72-8 | sc-296490 | 25 g | $193.00 | ||
Tetrabutylammonium Salicylate acts as a unique enzyme modulator, leveraging its salicylate moiety to form hydrogen bonds with key amino acid residues in enzyme active sites. This interaction can alter the enzyme's conformation, enhancing substrate affinity and specificity. The tetrabutyl groups contribute to hydrophobic interactions, influencing the enzyme's microenvironment and potentially accelerating reaction kinetics by stabilizing intermediate states during catalytic processes. | ||||||
CR8, (R)-Isomer | 294646-77-8 | sc-311306 | 5 mg | $174.00 | ||
CR8, (R)-Isomer exhibits intriguing enzymatic properties characterized by its selective binding affinity and stereospecific interactions with substrates. Its unique chiral configuration enhances catalytic efficiency, allowing for precise modulation of reaction pathways. The compound's ability to stabilize transition states through hydrogen bonding and hydrophobic interactions leads to accelerated reaction kinetics. Additionally, its structural motifs facilitate allosteric regulation, influencing enzyme activity in complex biochemical networks. | ||||||
L-Alanine beta-naphthylamide hydrobromide | 3513-56-2 | sc-286052 sc-286052A | 1 g 5 g | $120.00 $540.00 | ||
L-Alanine beta-naphthylamide hydrobromide acts as a selective enzyme inhibitor, exhibiting unique binding affinity to active sites of target enzymes. Its structural conformation allows for specific interactions with amino acid residues, altering enzyme kinetics and modulating catalytic efficiency. This compound can disrupt established metabolic pathways by competing with natural substrates, leading to altered reaction rates and influencing downstream biochemical processes. Its hydrobromide form enhances solubility, facilitating interaction dynamics. | ||||||
1,1′-(Decane-1,10-diyl)bis[4-aza-1-azoniabicyclo[2.2.2]octane] Dibromide | 94630-53-2 | sc-287195 | 1 g | $275.00 | ||
1,1'-(Decane-1,10-diyl)bis[4-aza-1-azoniabicyclo[2.2.2]octane] dibromide exhibits intriguing enzymatic characteristics, particularly through its ability to form stable complexes with substrates via ionic interactions. The compound's unique bicyclic structure allows for enhanced molecular flexibility, promoting efficient substrate binding and transition state formation. Its distinctive charge distribution influences reaction kinetics, enabling rapid catalytic cycles and precise control over enzymatic activity in complex biochemical environments. | ||||||