Date published: 2025-10-14

1-800-457-3801

SCBT Portrait Logo
Seach Input

Hexaethylene glycol monododecyl ether (CAS 3055-96-7)

0.0(0)
Write a reviewAsk a question

Alternate Names:
2-[2-[2-[2-[2-(2-dodecoxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethanol; C12E6; Dodecylhexaglycol
Application:
Hexaethylene glycol monododecyl ether is a nonionic surfactant
CAS Number:
3055-96-7
Purity:
≥97%
Molecular Weight:
450.65
Molecular Formula:
C24H50O7
Supplemental Information:
This is classified as a Dangerous Good for transport and may be subject to additional shipping charges.
For Research Use Only. Not Intended for Diagnostic or Therapeutic Use.
* Refer to Certificate of Analysis for lot specific data.

QUICK LINKS

Hexaethylene glycol monododecyl ether is a non-ionic surfactant which effectively releases histamine from rat peritoneal mast cells.(1) Hexaethylene glycol monododecyl ether is a versatile compound with various applications in different fields. It serves as a surfactant, playing a role in polymer synthesis, where it aids in emulsion and suspension stabilization and enhances solubility in aqueous solutions. Furthermore, it acts as a surfactant in the production of nanomaterials, facilitating their preparation, and as a dispersant in the formulation of colloidal dispersions. In addition, Hexaethylene glycol monododecyl ether functions as a stabilizer in the manufacturing process of biodegradable polymers and as a dispersant in the synthesis of nanocomposites.


Hexaethylene glycol monododecyl ether (CAS 3055-96-7) References

  1. Thermal diffusion behavior of nonionic surfactants in water.  |  Ning, H., et al. 2006. J Phys Chem B. 110: 10746-56. PMID: 16771322
  2. Coalescence-induced coalescence and dimensional crossover during the phase separation in ternary surfactant/polymer/water mixtures.  |  Demyanchuk, I., et al. 2005. J Phys Chem B. 109: 4419-24. PMID: 16851512
  3. Diffusion and viscosity in a crowded environment: from nano- to macroscale.  |  Szymański, J., et al. 2006. J Phys Chem B. 110: 25593-7. PMID: 17181192
  4. Investigation of the Soret effect in aqueous and non-aqueous mixtures by the thermal lens technique.  |  Polyakov, P. and Wiegand, S. 2009. Phys Chem Chem Phys. 11: 864-71. PMID: 19290334
  5. C12E6 and SDS surfactants simulated at the vacuum-water interface.  |  Shi, L., et al. 2010. Langmuir. 26: 5462-74. PMID: 20334404
  6. Size and shape of micelles studied by means of SANS, PCS, and FCS.  |  Gapiński, J., et al. 2010. Langmuir. 26: 9304-14. PMID: 20345164
  7. Molecular dynamics simulations of surfactants at the silica-water interface: anionic vs nonionic headgroups.  |  Tummala, NR., et al. 2011. J Colloid Interface Sci. 362: 135-43. PMID: 21757203
  8. Tunable depletion potentials driven by shape variation of surfactant micelles.  |  Gratale, MD., et al. 2016. Phys Rev E. 93: 050601. PMID: 27300818
  9. Structural Features of Reconstituted Cuticular Wax Films upon Interaction with Nonionic Surfactant C12E6.  |  Pambou, E., et al. 2018. Langmuir. 34: 3395-3404. PMID: 29444568
  10. What happens when pesticides are solubilized in nonionic surfactant micelles.  |  Hu, X., et al. 2019. J Colloid Interface Sci. 541: 175-182. PMID: 30685612
  11. How does solubilisation of plant waxes into nonionic surfactant micelles affect pesticide release?  |  Hu, X., et al. 2019. J Colloid Interface Sci. 556: 650-657. PMID: 31499436
  12. What happens when pesticides are solubilised in binary ionic/zwitterionic-nonionic mixed micelles?  |  Hu, X., et al. 2021. J Colloid Interface Sci. 586: 190-199. PMID: 33162043
  13. Emergence of Electric Fields at the Water-C12E6 Surfactant Interface.  |  Gera, R., et al. 2021. J Am Chem Soc. 143: 15103-15112. PMID: 34498857
  14. Observation of Strong Synergy in the Interfacial Water Response of Binary Ionic and Nonionic Surfactant Mixtures.  |  Sengupta, S., et al. 2022. J Phys Chem Lett. 13: 11391-11397. PMID: 36455883

Ordering Information

Product NameCatalog #UNITPriceQtyFAVORITES

Hexaethylene glycol monododecyl ether, 1 g

sc-252881
1 g
$315.00