TAJ-β inhibitors represent a specialized class of chemical compounds designed to specifically inhibit the function of the TAJ-β protein, a molecule known to play a role in various cellular regulatory pathways. TAJ-β inhibitors operate by binding to the active sites or key functional domains of the TAJ-β protein, thus preventing its normal activity within the cell. These inhibitors are often developed to fit the precise structural features of the TAJ-β protein, ensuring that they can effectively block its interactions or catalytic actions. The inhibitors may target different regions of the protein, such as its binding pockets or allosteric sites, depending on their mode of action and the specific mechanism by which they interfere with the protein's function. The chemical design of TAJ-β inhibitors is crucial for achieving a high degree of specificity, ensuring they interact with TAJ-β while minimizing interaction with other proteins.
TAJ-β inhibitors are synthesized using advanced organic synthesis techniques that allow the precise assembly of molecules with defined structural features. These compounds often feature a combination of hydrophobic and hydrophilic regions that are designed to complement the three-dimensional shape of the TAJ-β protein. Some inhibitors may include functional groups capable of forming strong covalent or non-covalent bonds with the protein's active sites, thereby enhancing their inhibitory potency. The solubility, stability, and reactivity of these inhibitors are carefully considered during their design, as these properties influence how effectively the inhibitor can interact with TAJ-β under different conditions. The diversity in the structural composition of TAJ-β inhibitors allows for the fine-tuning of their binding affinities, making them a valuable class of compounds for studying the biochemical functions and regulatory mechanisms associated with the TAJ-β protein.
Items 1 to 10 of 11 total
展示:
产品名称 | CAS # | 产品编号 | 数量 | 价格 | 应用 | 排名 |
---|---|---|---|---|---|---|
SB 202190 | 152121-30-7 | sc-202334 sc-202334A sc-202334B | 1 mg 5 mg 25 mg | $30.00 $125.00 $445.00 | 45 | |
抑制 p38 MAPK,可能会影响 TAJ-β 可能参与的炎症反应途径。 | ||||||
LY 294002 | 154447-36-6 | sc-201426 sc-201426A | 5 mg 25 mg | $121.00 $392.00 | 148 | |
PI3K 抑制剂可能会破坏对细胞存活和增殖非常重要的信号通路。 | ||||||
SP600125 | 129-56-6 | sc-200635 sc-200635A | 10 mg 50 mg | $65.00 $267.00 | 257 | |
JNK 抑制剂可能会影响与 TAJ-β 活性有关的应激反应途径和细胞凋亡。 | ||||||
U-0126 | 109511-58-2 | sc-222395 sc-222395A | 1 mg 5 mg | $63.00 $241.00 | 136 | |
MEK抑制剂,可能会影响MAPK/ERK通路,这可能与TAJ-β的功能有关。 | ||||||
Wortmannin | 19545-26-7 | sc-3505 sc-3505A sc-3505B | 1 mg 5 mg 20 mg | $66.00 $219.00 $417.00 | 97 | |
另一种 PI3K 抑制剂可能会进一步影响 TAJ-β 假设参与的信号通路。 | ||||||
Rapamycin | 53123-88-9 | sc-3504 sc-3504A sc-3504B | 1 mg 5 mg 25 mg | $62.00 $155.00 $320.00 | 233 | |
mTOR 抑制剂可能会调节与 TAJ-β 相关的细胞生长和自噬过程。 | ||||||
Sorafenib | 284461-73-0 | sc-220125 sc-220125A sc-220125B | 5 mg 50 mg 500 mg | $56.00 $260.00 $416.00 | 129 | |
RAF 激酶抑制剂可影响涉及 TAJ-β 的细胞生长和分化途径。 | ||||||
Z-VAD-FMK | 187389-52-2 | sc-3067 | 500 µg | $74.00 | 256 | |
泛天冬酶抑制剂,可能会影响 TAJ-β 可能调控的细胞凋亡途径。 | ||||||
Bortezomib | 179324-69-7 | sc-217785 sc-217785A | 2.5 mg 25 mg | $132.00 $1064.00 | 115 | |
蛋白酶体抑制剂可能会影响与 TAJ-β 功能相关的蛋白质降解途径。 | ||||||
Thalidomide | 50-35-1 | sc-201445 sc-201445A | 100 mg 500 mg | $109.00 $350.00 | 8 | |
调节 NF-κB 和其他信号分子,可能影响炎症和细胞生长。 |