SAS-4 Activators refer to a diverse group of chemical compounds that are known to enhance the activity of the protein spindle assembly abnormal 4 (SAS-4), a protein that is crucial for centriole duplication and, by extension, proper cell cycle progression. These activators work through various biochemical mechanisms to ensure the proper functioning of SAS-4, which is encoded by the gene SASS4. One of the principal mechanisms by which these activators function is by stabilizing the protein, thereby aiding in the assembly of centrioles. This stabilization is crucial as it allows SAS-4 to effectively participate in the early stages of centriole biogenesis, a process indispensable for the formation of centrosomes and subsequent spindle formation during mitosis. Some SAS-4 activators are known to bind directly to the SAS-4 protein, enhancing its affinity for other centriolar components, which is a critical step in the centriole assembly pathway.
In addition to direct binding, certain SAS-4 Activators influence post-translational modifications of the protein. These modifications can lead to an increase in SAS-4's functional activity by promoting its incorporation into the developing centriole structure. The activators might also protect SAS-4 from premature degradation, ensuring a sufficient concentration of the protein is maintained within the cell to facilitate its role in centriole duplication. Furthermore, some SAS-4 Activators indirectly support the protein's activity by modulating the cellular levels of other proteins that interact with SAS-4, thereby creating a favorable environment for its function. For instance, certain compounds can inhibit phosphatases that would typically dephosphorylate SAS-4, thus maintaining SAS-4 in a phosphorylated state that is associated with active centriole assembly. The intricacy of SAS-4's role in cell biology is underscored by the specificity of these activators, which finely tune the activity of SAS-4, ensuring the fidelity of cell division and the maintenance of genomic integrity.
SEE ALSO...
Items 1 to 10 of 11 total
Display:
| Product Name | CAS # | Catalog # | QUANTITY | Price | Citations | RATING |
|---|---|---|---|---|---|---|
Forskolin | 66575-29-9 | sc-3562 sc-3562A sc-3562B sc-3562C sc-3562D | 5 mg 50 mg 1 g 2 g 5 g | $76.00 $150.00 $725.00 $1385.00 $2050.00 | 73 | |
Forskolin activates adenylyl cyclase, increasing levels of cyclic AMP (cAMP) in cells. Elevated cAMP activates PKA (Protein Kinase A), which can phosphorylate various proteins, including those that may interact with SAS-4, leading to its functional enhancement in centriole assembly. | ||||||
Spermidine | 124-20-9 | sc-215900 sc-215900B sc-215900A | 1 g 25 g 5 g | $56.00 $595.00 $173.00 | ||
Spermidine is a polyamine that can modulate autophagy through the activation of AMPK. Enhanced autophagic flux has been shown to clear aggregated proteins, potentially maintaining SAS-4 stability and promoting its functional role in centrosome duplication. | ||||||
Lithium | 7439-93-2 | sc-252954 | 50 g | $214.00 | ||
Lithium acts as a GSK-3 inhibitor, which could stabilize proteins involved in the Wnt signaling pathway, indirectly influencing the microtubule network where SAS-4 plays a crucial role in microtubule nucleation. | ||||||
(−)-Epigallocatechin Gallate | 989-51-5 | sc-200802 sc-200802A sc-200802B sc-200802C sc-200802D sc-200802E | 10 mg 50 mg 100 mg 500 mg 1 g 10 g | $42.00 $72.00 $124.00 $238.00 $520.00 $1234.00 | 11 | |
EGCG inhibits multiple kinases, potentially altering signaling pathways that converge on the microtubule-organizing center, thereby enhancing the stability and function of SAS-4 in centrosome composition. | ||||||
β-Nicotinamide mononucleotide | 1094-61-7 | sc-212376 sc-212376A sc-212376B sc-212376C sc-212376D | 25 mg 100 mg 1 g 2 g 5 g | $92.00 $269.00 $337.00 $510.00 $969.00 | 4 | |
NMN is a precursor of NAD+, which is essential for sirtuin activity. Sirtuins can deacetylate tubulin and affect microtubule dynamics, thus potentially enhancing the stabilizing function of SAS-4 in centrioles. | ||||||
Resveratrol | 501-36-0 | sc-200808 sc-200808A sc-200808B | 100 mg 500 mg 5 g | $60.00 $185.00 $365.00 | 64 | |
Resveratrol activates SIRT1, which deacetylates proteins and could influence microtubule dynamics. Through this mechanism, resveratrol could enhance the role of SAS-4 in centriole biogenesis and function. | ||||||
Zoledronic acid, anhydrous | 118072-93-8 | sc-364663 sc-364663A | 25 mg 100 mg | $90.00 $251.00 | 5 | |
Zoledronic acid inhibits farnesyl pyrophosphate synthase, potentially affecting protein prenylation and membrane association, which could stabilize the centrosomal structure where SAS-4 is active. | ||||||
Retinoic Acid, all trans | 302-79-4 | sc-200898 sc-200898A sc-200898B sc-200898C | 500 mg 5 g 10 g 100 g | $65.00 $319.00 $575.00 $998.00 | 28 | |
Retinoic acid influences cellular differentiation and has roles in microtubule dynamics. It could enhance the role of SAS-4 in centrosome-dependent processes during cell cycle progression. | ||||||
Pioglitazone | 111025-46-8 | sc-202289 sc-202289A | 1 mg 5 mg | $54.00 $123.00 | 13 | |
Pioglitazone activates PPARγ, which has been implicated in the regulation of microtubule dynamics. This could indirectly enhance the functional activity of SAS-4 in the centrosome. | ||||||
Rapamycin | 53123-88-9 | sc-3504 sc-3504A sc-3504B | 1 mg 5 mg 25 mg | $62.00 $155.00 $320.00 | 233 | |
Rapamycin inhibits mTOR, which affects protein synthesis and autophagy. By modulating autophagy, rapamycin could indirectly enhance the functionality of SAS-4 in centrosome maintenance. | ||||||