RNA polymerase I (Pol I) is a pivotal enzyme complex in eukaryotic cells, primarily charged with the transcription of ribosomal RNA (rRNA). This process is fundamental to the formation of ribosomes, the cellular "machines" that synthesize proteins. Pol I is a multi-subunit enzyme located in the nucleolus, a subnuclear body where ribosome production occurs. The activity of Pol I is finely tuned by the cellular demand for protein synthesis, which in turn reflects the cell's growth and metabolic rates. Understanding the regulation of Pol I is crucial, as it is intimately linked with cellular health and the rate of growth and division of cells. The expression of Pol I, while generally stable, can be subject to change under various physiological conditions. A network of signaling pathways and environmental cues can lead to changes in the transcriptional machinery, including the expression levels of Pol I.
Certain chemical compounds have the capacity to act as activators and can potentially influence the expression of Pol I. These activators can come from diverse chemical families and possess distinct modes of action. For instance, compounds that alter the epigenetic landscape, such as histone deacetylase inhibitors, can promote a chromatin configuration that is more conducive to transcription, thereby potentially increasing the expression of Pol I. Similarly, small molecules that modulate intracellular signaling pathways can trigger a cascade of transcriptional events that lead to the upregulation of Pol I. These activators can act indirectly by influencing the cellular environment or more directly by interacting with the transcriptional machinery itself. The exact mechanism by which each chemical compound influences Pol I expression can be highly specific and is often the result of extensive cellular signaling networks and feedback mechanisms. It is through the intricate interplay of these factors that the expression of Pol I can be finely calibrated to meet the cellular demands for ribosome production.
Items 1 to 10 of 12 total
展示:
产品名称 | CAS # | 产品编号 | 数量 | 价格 | 应用 | 排名 |
---|---|---|---|---|---|---|
Retinoic Acid, all trans | 302-79-4 | sc-200898 sc-200898A sc-200898B sc-200898C | 500 mg 5 g 10 g 100 g | $65.00 $319.00 $575.00 $998.00 | 28 | |
维甲酸可通过与其受体结合启动转录物激活,有可能通过维甲酸反应元件上调 RNA 聚合酶 I 的基因。 | ||||||
5-Azacytidine | 320-67-2 | sc-221003 | 500 mg | $280.00 | 4 | |
这种胞苷类似物可导致 DNA 去甲基化,从而重新激活沉默基因,其中可能包括 RNA 聚合酶 I 亚基的编码基因。 | ||||||
Trichostatin A | 58880-19-6 | sc-3511 sc-3511A sc-3511B sc-3511C sc-3511D | 1 mg 5 mg 10 mg 25 mg 50 mg | $149.00 $470.00 $620.00 $1199.00 $2090.00 | 33 | |
通过抑制组蛋白去乙酰化酶,Trichostatin A 可以促进染色质处于更加开放的状态,使转录物能够进入并可能刺激 RNA 聚合酶 I 基因的转录。 | ||||||
Forskolin | 66575-29-9 | sc-3562 sc-3562A sc-3562B sc-3562C sc-3562D | 5 mg 50 mg 1 g 2 g 5 g | $76.00 $150.00 $725.00 $1385.00 $2050.00 | 73 | |
福斯可林(Forskolin)升高cAMP水平可以激活蛋白激酶A,后者反过来可以磷酸化转录因子,从而可能增强包括RNA聚合酶I在内的基因的转录。 | ||||||
Lithium | 7439-93-2 | sc-252954 | 50 g | $214.00 | ||
氯化锂可以激活某些信号转导途径,如 GSK-3 抑制,这可能会导致基因转录增加,可能包括 RNA 聚合酶 I 的转录。 | ||||||
Sodium Butyrate | 156-54-7 | sc-202341 sc-202341B sc-202341A sc-202341C | 250 mg 5 g 25 g 500 g | $30.00 $46.00 $82.00 $218.00 | 18 | |
作为组蛋白去乙酰化酶抑制剂,丁酸钠可以增强组蛋白的乙酰化,从而通过允许转录物进入,包括RNA聚合酶I的进入,潜在地刺激基因的表达。 | ||||||
(−)-Epigallocatechin Gallate | 989-51-5 | sc-200802 sc-200802A sc-200802B sc-200802C sc-200802D sc-200802E | 10 mg 50 mg 100 mg 500 mg 1 g 10 g | $42.00 $72.00 $124.00 $238.00 $520.00 $1234.00 | 11 | |
表没食子儿茶素没食子酸酯可以触发各种细胞内信号级联反应,从而增加转录活性,提高RNA聚合酶I基因的转录水平。 | ||||||
Rapamycin | 53123-88-9 | sc-3504 sc-3504A sc-3504B | 1 mg 5 mg 25 mg | $62.00 $155.00 $320.00 | 233 | |
通过抑制 mTOR,雷帕霉素可以启动一连串的下游效应,最终可能导致某些基因(可能包括编码 RNA 聚合酶 I 的基因)的转录物增强。 | ||||||
Resveratrol | 501-36-0 | sc-200808 sc-200808A sc-200808B | 100 mg 500 mg 5 g | $60.00 $185.00 $365.00 | 64 | |
白藜芦醇可以激活 sirtuin 蛋白,使组蛋白和其他蛋白质去乙酰化,从而可能刺激包括 RNA 聚合酶 I 在内的各种基因的表达。 | ||||||
Dexamethasone | 50-02-2 | sc-29059 sc-29059B sc-29059A | 100 mg 1 g 5 g | $76.00 $82.00 $367.00 | 36 | |
作为合成糖皮质激素,地塞米松可与糖皮质激素受体结合,启动转录反应,从而上调基因转录,可能包括RNA聚合酶I的基因。 |