The 'snail' gene (Sna) in Drosophila melanogaster is a pivotal transcription factor that orchestrates a variety of developmental processes, including embryonic morphogenesis and nervous system development. The Sna protein plays a critical role in the transition of cells from an epithelial state to a mesenchymal state, a process integral to embryonic layer formation and differentiation. The expression of Sna is a tightly controlled event within the cellular milieu, subject to precise spatial and temporal regulation. This regulation is crucial for the proper progression of development and the maintenance of tissue integrity. Given its central role, understanding the exogenous factors that can upregulate Sna expression provides insight into the molecular dance of gene expression that underpins development in this model organism.
Several chemical compounds have the potential to induce the expression of the Sna protein in Drosophila melanogaster. For instance, histone deacetylase inhibitors, such as Trichostatin A, could increase transcriptional activity by promoting a more open chromatin structure, thereby enhancing the accessibility of the Sna promoter to transcriptional machinery. Similarly, compounds that mimic or interfere with hormone signaling pathways, like Methoprene and Bisphenol A, respectively, may lead to an increase in Sna expression. Methoprene, which acts as a synthetic analog to juvenile hormone, could initiate a cascade of gene expression changes, while Bisphenol A's ability to bind to estrogen receptors may result in an upsurge of Sna transcription. Environmental stressors, including Cadmium chloride and Paraquat, might also raise Sna levels by activating cellular defense mechanisms that respond to external stresses with a broad shift in gene expression, including that of developmental genes. Additionally, Lithium Chloride, known to stimulate Wnt signaling, could enhance the expression of Sna, as the Wnt pathway is a key regulator of gene expression during development. These interactions represent a complex interplay between exogenous compounds and the intricate network of developmental gene regulation in Drosophila melanogaster.
関連項目
产品名称 | CAS # | 产品编号 | 数量 | 价格 | 应用 | 排名 |
---|---|---|---|---|---|---|
Di-n-butyl phthalate | 84-74-2 | sc-257307 sc-257307A sc-257307B | 5 g 25 g 1 kg | $40.00 $51.00 $102.00 | 1 | |
邻苯二甲酸二正丁酯可能会通过干扰内分泌信号来上调 Sna 的表达,从而导致胚胎发育过程中发育基因的过度表达。 | ||||||
Trichostatin A | 58880-19-6 | sc-3511 sc-3511A sc-3511B sc-3511C sc-3511D | 1 mg 5 mg 10 mg 25 mg 50 mg | $149.00 $470.00 $620.00 $1199.00 $2090.00 | 33 | |
Trichostatin A 通过抑制组蛋白去乙酰化酶,可以提高染色质的可及性,从而刺激 Sna 等基因的转录物活性。 | ||||||
Bisphenol A | 80-05-7 | sc-391751 sc-391751A | 100 mg 10 g | $300.00 $490.00 | 5 | |
双酚 A 具有雌激素活性,可通过与雌激素受体结合来上调 Sna,而雌激素受体与发育基因表达网络密切相关。 | ||||||
Cadmium chloride, anhydrous | 10108-64-2 | sc-252533 sc-252533A sc-252533B | 10 g 50 g 500 g | $55.00 $179.00 $345.00 | 1 | |
氯化镉可能会引发细胞应激反应,其中包括上调 Sna 的表达,这是转录因子动态更广泛转变的一部分。 | ||||||
Retinoic Acid, all trans | 302-79-4 | sc-200898 sc-200898A sc-200898B sc-200898C | 500 mg 5 g 10 g 100 g | $65.00 $319.00 $575.00 $998.00 | 28 | |
视黄酸可通过参与视黄酸受体刺激 Sna 的表达,而视黄酸受体在胚胎发育过程中起着转录调节作用。 | ||||||
Rapamycin | 53123-88-9 | sc-3504 sc-3504A sc-3504B | 1 mg 5 mg 25 mg | $62.00 $155.00 $320.00 | 233 | |
雷帕霉素会抑制 mTOR 信号转导,这可能会导致 Sna 的上调,因为生物体会对受抑制的生长和改变的蛋白质合成进行补偿。 | ||||||
Lithium | 7439-93-2 | sc-252954 | 50 g | $214.00 | ||
通过激活 Wnt 信号,氯化锂可以刺激 Sna 的转录物,因为 Wnt 通路是发育基因表达的关键调控因子。 | ||||||
Lead(II) Acetate | 301-04-2 | sc-507473 | 5 g | $83.00 | ||
暴露于醋酸铅可能会上调 Sna 的表达,这是针对重金属诱导的毒性和基因转录干扰的防御性细胞机制的一部分。 | ||||||
Paraquat chloride | 1910-42-5 | sc-257968 | 250 mg | $149.00 | 7 | |
百草枯会产生活性氧,这可能会刺激细胞做出反应,包括上调 Sna 以抵消氧化损伤。 | ||||||
Cyproterone Acetate | 427-51-0 | sc-204703 sc-204703A | 100 mg 250 mg | $60.00 $199.00 | 5 | |
醋酸环丙孕酮作为一种抗雄激素化合物,可能会通过破坏正常雄激素受体介导的发育基因转录物抑制作用来上调 Sna。 |