If such a class were to be recognized, it would imply a group of chemical compounds specifically designed to modulate the activity of the biological entity termed 'pelota'. Assuming 'pelota' refers to a protein or biochemical pathway, activators of this class would interact with the 'pelota' entity to enhance its biological function. This could be through direct binding to the protein, which may stabilize it in an active conformation, or by facilitating its interaction with other proteins or substrates. The nature of these activators would be determined by the structural requirements of the 'pelota' binding sites, leading to a diverse array of molecular structures, possibly encompassing small organic compounds, peptides, or other biologically active molecules, each with specific affinities and selectivities towards their target.
The identification and development of 'pelota Activators' would involve a combination of computational chemistry and experimental biology. Initially, a detailed understanding of the 'pelota' structure and function would be required, which could be gleaned from X-ray crystallography, NMR spectroscopy, or cryo-electron microscopy data. With this information, virtual screening processes could be employed to identify potential activator compounds, which would then be synthesized and assessed for their ability to enhance 'pelota' activity. Biochemical assays would be crucial for this assessment, testing the effects of these compounds on the activity of 'pelota' in vitro. Such assays would likely include activity measurements in the presence of substrate molecules or binding studies to determine the affinity and kinetics of interaction between the 'pelota' protein and the activators. The results of these experiments would inform further optimization of the compounds, potentially leading to the development of a diverse chemical class of 'pelota Activators'. However, it is important to note that this concept is speculative and is not based on current scientific consensus or literature.
| 제품명 | CAS # | 카탈로그 번호 | 수량 | 가격 | 引用 | RATING |
|---|---|---|---|---|---|---|
Cycloheximide | 66-81-9 | sc-3508B sc-3508 sc-3508A | 100 mg 1 g 5 g | $41.00 $84.00 $275.00 | 127 | |
진핵 단백질 합성을 억제하여 PELO와 같은 리보솜 재활용 인자를 상향 조절하는 스트레스 반응을 유발할 수 있습니다. | ||||||
Puromycin dihydrochloride | 58-58-2 | sc-108071 sc-108071B sc-108071C sc-108071A | 25 mg 250 mg 1 g 50 mg | $42.00 $214.00 $832.00 $66.00 | 394 | |
단백질 합성 중 조기 사슬 종료를 유발하여 잠재적으로 리보솜 재활용 메커니즘의 필요성을 증가시킵니다. | ||||||
Anisomycin | 22862-76-6 | sc-3524 sc-3524A | 5 mg 50 mg | $99.00 $259.00 | 36 | |
펩타이드 결합 형성을 차단하여 단백질 합성을 억제하고 잠재적으로 세포 반응을 일으켜 PELO를 상향 조절합니다. | ||||||
Chloramphenicol | 56-75-7 | sc-3594 | 25 g | $90.00 | 10 | |
박테리아 리보솜에 결합하여 단백질 합성을 억제하며, 이에 반응하여 리보솜 관련 단백질의 발현을 향상시킬 수 있습니다. | ||||||
Actinomycin D | 50-76-0 | sc-200906 sc-200906A sc-200906B sc-200906C sc-200906D | 5 mg 25 mg 100 mg 1 g 10 g | $74.00 $243.00 $731.00 $2572.00 $21848.00 | 53 | |
DNA에 인터칼리화되어 단백질 합성 경로에 간접적으로 영향을 미쳐 PELO 발현에 영향을 줄 수 있는 RNA 합성을 방지합니다. | ||||||
Emetine | 483-18-1 | sc-470668 sc-470668A sc-470668B sc-470668C | 1 mg 10 mg 50 mg 100 mg | $440.00 $900.00 $1400.00 $2502.00 | ||
전위를 차단하여 단백질 합성을 억제하여 잠재적으로 리보솜 재활용 단백질 발현을 증가시킬 수 있습니다. | ||||||
Tetracycline | 60-54-8 | sc-205858 sc-205858A sc-205858B sc-205858C sc-205858D | 10 g 25 g 100 g 500 g 1 kg | $63.00 $94.00 $270.00 $417.00 $634.00 | 6 | |
박테리아의 단백질 합성을 억제하고 스트레스에 대한 반응으로 리보솜 구조 인자의 상향 조절을 간접적으로 유발할 수 있습니다. | ||||||
α-Amanitin | 23109-05-9 | sc-202440 sc-202440A | 1 mg 5 mg | $269.00 $1050.00 | 26 | |
RNA 중합 효소 II를 억제하고 mRNA 합성에 영향을 미쳐 간접적으로 리보솜 재활용 단백질 수준의 변화를 일으킬 수 있습니다. | ||||||