Date published: 2025-9-27

001 800-1338-3838

SCBT Portrait Logo
Seach Input

GABA T-3 アクチベーター

GABA T-3 Activators, comprising a range of compounds and ions, play integral roles in enhancing the functionality of GABA T-3, a transporter encoded by the SLC6A11 gene, responsible for the reuptake of GABA, the primary inhibitory neurotransmitter in the brain. GABA itself is the primary substrate for GABA T-3, and its presence is essential for the transporter's activity in regulating neurotransmitter levels. Essential ions such as Sodium Chloride, Chloride Ions, Magnesium Chloride, and Potassium Chloride contribute to the transporter's functionality. Sodium and Chloride ions are crucial for maintaining the electrochemical gradient that drives GABA's active transport, while Magnesium and Potassium help stabilize neuronal membranes and maintain ionic balance.

In addition to these ions, the activity of GABA T-3 is modulated by various compounds that interact with GABAergic signaling. Taurine, Zinc sulfate solution, and Guanosine Diphosphate (GDP) influence GABA receptor function and G-protein mediated signaling pathways, indirectly affecting the reuptake dynamics of GABA T-3. (+)-Bicuculline, by acting as a GABA receptor antagonist, increases the availability of GABA in the synaptic cleft, potentially enhancing the substrate availability for GABA T-3. Conversely, Muscimol and (±)-Baclofen, as GABA receptor agonists, modulate GABAergic neurotransmission, which can indirectly influence GABA reuptake by GABA T-3. Lastly, Vigabatrin, by inhibiting GABA transaminase, leads to increased GABA levels, thereby providing more substrate for GABA T-3 mediated reuptake. Collectively, these GABA T-3 Activators underscore the complex interplay of biochemical and ionic factors that enhance the role of GABA T-3 in neurotransmitter regulation, highlighting its critical function in maintaining neural excitatory/inhibitory balance.

関連項目

Items 31 to 11 of 11 total

画面:

製品名CAS #カタログ #数量価格引用文献レーティング