Date published: 2025-9-11

00800 4573 8000

SCBT Portrait Logo
Seach Input

ZFP105 Attivatori

Chemical activators of ZFP105 include a variety of compounds that enhance the protein's function through different mechanisms. Zinc Pyrithione can bind directly to ZFP105, enabling it to more effectively engage with DNA and carry out its role as a transcription factor. Likewise, Forskolin raises intracellular cAMP levels, leading to the activation of Protein Kinase A (PKA), which may phosphorylate ZFP105 and thus enhance its transcriptional activity. Ionomycin, by increasing intracellular calcium levels, can activate calcium-dependent kinases that may target ZFP105 for phosphorylation, enhancing its activity. Phorbol 12-myristate 13-acetate (PMA) serves as an activator of Protein Kinase C (PKC), which could phosphorylate ZFP105 at specific sites and activate the protein.

Epigallocatechin gallate (EGCG) may support ZFP105 activity by mitigating oxidative stress, thus preserving the protein's structure and function. Resveratrol activates sirtuins, which could deacetylate ZFP105, potentially enhancing its DNA-binding and transcriptional activity. Spermidine, through the induction of autophagy, can contribute to the maintenance of ZFP105's proper function by preventing its misfolding or aggregation. Lithium Chloride, by inhibiting GSK-3, can lead to the activation of ZFP105 by preventing its phosphorylation-dependent inhibition, sustaining the protein in an active state. Sodium Butyrate, acting as a histone deacetylase inhibitor, can facilitate a relaxed chromatin state around ZFP105 target sites, potentially boosting its transcriptional activity.

Curcumin's influence on NF-κB pathways may enhance the functional activity of ZFP105 by modulating gene regulation. Trichostatin A (TSA), similar to Sodium Butyrate, can alter chromatin structure to promote ZFP105's DNA binding and activation. Lastly, Dibutyryl-cAMP (db-cAMP), a synthetic analog of cAMP, can activate PKA, which may phosphorylate and thus activate ZFP105, potentially increasing its stability or modifying its interactions with DNA and other proteins. These chemicals activate ZFP105 through various pathways, including direct binding, phosphorylation by kinases, chromatin remodeling, and modulation of cell stress responses, all contributing to ZFP105's role as a transcription factor.

VEDI ANCHE...

Items 31 to 12 of 12 total

Schermo:

Nome del prodottoCAS #Codice del prodottoQuantitàPrezzoCITAZIONIValutazione