Chemical activators of T2R48 include a variety of compounds that bind directly to the protein, initiating a receptor-mediated response. Saccharin, a well-known artificial sweetener, can activate T2R48 by fitting snugly into its taste receptor sites, eliciting a change in the protein's conformation and triggering signal transduction pathways that communicate a taste sensation. This is a similar mechanism of activation as seen with Denatonium and Quinine, both of which are characterized by their intensely bitter flavor and can activate T2R48 through direct ligand-receptor interactions. Propylthiouracil, a compound with a thiourea group, also activates T2R48 via direct interaction, capitalizing on the receptor's sensitivity to thiourea structures.
In the same vein, Acesulfame K, an artificial sweetener, and Phenylthiocarbamide (PTC), a substance that varies in taste perception among individuals, both activate T2R48 by binding to the receptor. Sucralose, another artificial sweetener, not only simulates a sweet taste but also activates T2R48, which is tuned to detect a wide range of taste stimuli, including bitter compounds. Colchicine, a compound with medicinal properties and a bitter taste, also activates T2R48 by engaging the receptor directly. The bitter-tasting magnesium sulfate follows suit, activating T2R48 through a similar receptor-ligand binding interaction. Amiloride, which influences ion transport pathways, activates T2R48 by its direct interaction with the receptor, thus playing a role in the taste signaling process.
Furthermore, nicotine, an alkaloid known for its bitter taste, can activate T2R48 by direct interaction, highlighting the receptor's role in detecting bitter-tasting molecules. Lastly, caffeine, a widely consumed bitter compound, activates T2R48 by engaging with the receptor. The activation of T2R48 by these diverse chemicals is crucial for the perception of a range of bitter tastes, underlining the importance of T2R48 in the gustatory system and its role in detecting various bitter compounds through direct molecular interactions.
関連項目
Items 11 to 11 of 11 total
展示:
产品名称 | CAS # | 产品编号 | 数量 | 价格 | 应用 | 排名 |
---|---|---|---|---|---|---|
Caffeine | 58-08-2 | sc-202514 sc-202514A sc-202514B sc-202514C sc-202514D | 5 g 100 g 250 g 1 kg 5 kg | $32.00 $66.00 $95.00 $188.00 $760.00 | 13 | |
咖啡因通过直接受体参与激活 T2R48,导致与苦味感知相关的信号转导。 |