Date published: 2025-10-29

00800 4573 8000

SCBT Portrait Logo
Seach Input

RING1 Ativadores

RhoA Activators represents a diverse group of molecules that play a crucial role in regulating cellular processes by modulating the activity of RhoA, a small GTPase protein. RhoA, a member of the Rho family of GTPases, is a central player in the intricate web of intracellular signaling pathways that govern cell morphology, cytoskeletal dynamics, and cell migration. RhoA, in its active GTP-bound form, exerts its influence by interacting with downstream effectors, most notably Rho-associated protein kinase (ROCK) and various formin proteins. These interactions trigger a cascade of events that lead to actin cytoskeleton reorganization, cell contraction, and changes in cell shape. Members of the RhoA Activators class can be grouped into several categories based on their mechanisms of action. Some compounds, such as Epinephrine and Angiotensin II, activate RhoA by binding to specific cell surface receptors, initiating intracellular signaling cascades that ultimately lead to RhoA activation. Others, like Fasudil and Y-27632, function as inhibitors of RhoA kinase, preventing the phosphorylation and inactivation of RhoA and thereby maintaining it in its active state.

Additionally, compounds like Lysophosphatidic Acid (LPA) can directly enhance RhoA gene transcription by binding to their respective receptors on the cell membrane, thus promoting the synthesis of RhoA proteins. Thrombin and Lipopolysaccharide (LPS), on the other hand, activate RhoA through protease-activated and Toll-like receptors, respectively, initiating the transcriptional activation of RhoA. These RhoA Activators, through their various mechanisms of action, act as molecular switches, finely tuning the activity of RhoA and subsequently impacting fundamental cellular processes like cell adhesion, migration, and contraction. Understanding the intricate ways in which these compounds modulate RhoA provides valuable insights into the regulatory mechanisms governing cell behavior and has implications in various fields of cellular and molecular biology, including studies of cytoskeletal dynamics, cell motility, and tissue development.

VEJA TAMBÉM

Nome do ProdutoCAS #Numero de CatalogoQuantidadePrecoUso e aplicacaoNOTAS

Suberoylanilide Hydroxamic Acid

149647-78-9sc-220139
sc-220139A
100 mg
500 mg
$130.00
$270.00
37
(2)

O SAHA é um inibidor da histona desacetilase (HDAC) que afecta o estado de acetilação das histonas. Ao inibir as HDACs, o SAHA aumenta a acetilação das histonas, conduzindo a uma estrutura de cromatina aberta e a padrões de expressão genética alterados. Esta alteração na acessibilidade da cromatina pode afetar indiretamente a atividade do RING1 como parte do PRC1.

5-Azacytidine

320-67-2sc-221003
500 mg
$280.00
4
(1)

A 5-Azacitidina é um inibidor da DNA metiltransferase que pode influenciar os padrões de metilação do DNA. Ao inibir as metiltransferases do ADN, a 5-Azacitidina conduz à hipometilação do ADN, que pode afetar indiretamente a expressão genética e a estrutura da cromatina. Estas alterações epigenéticas podem afetar a atividade de RING1 no contexto de PRC1.