The term KIAA1822L Activators suggests a class of chemical compounds postulated to interact with a protein encoded by a gene that might be designated as KIAA1822L. The KIAA nomenclature originates from a series of genes identified by the Kazusa DNA Research Institute, where many of these genes were initially cataloged without detailed functional information. The protein KIAA1822L would, therefore, require initial investigative research to determine its cellular role, expression patterns, and biochemical properties. If KIAA1822L activators existed, they would be molecules designed to enhance the activity of this protein, which would involve increasing its expression, activity, stability, or modulating its interactions with other cellular components. The design and discovery process of such activators would likely be initiated by high-throughput chemical screening, aiming to identify compounds that can positively modulate the protein's function. Subsequent validation steps would include verifying the specificity of these activators to ensure that the observed effects are due to direct interaction with the KIAA1822L protein.
Developing a deeper understanding of the interaction between KIAA1822L activators and their target protein would involve a series of advanced analytical techniques. Researchers might employ methods such as affinity chromatography to quantify the binding affinity of the activators, or use mass spectrometry to elucidate the molecular weight and structural features of the protein-activator complexes. Additionally, computational tools like molecular dynamics simulations could predict how the activators affect the protein's structure and function. Nuclear magnetic resonance (NMR) spectroscopy could provide insights into the conformational changes within the protein upon activator binding. Through these methods, scientists would seek to map the activator binding sites, understand the mechanism of activation, and characterize the molecular interactions at play. This detailed molecular characterization would be essential for researchers to fully grasp the biochemical implications of activating the KIAA1822L protein, even though, as of now, such a protein and its corresponding activators are purely speculative and not grounded in the current scientific literature.
Items 11 to 12 of 12 total
画面:
製品名 | CAS # | カタログ # | 数量 | 価格 | 引用文献 | レーティング |
---|---|---|---|---|---|---|
Citric Acid, Anhydrous | 77-92-9 | sc-211113 sc-211113A sc-211113B sc-211113C sc-211113D | 500 g 1 kg 5 kg 10 kg 25 kg | $49.00 $108.00 $142.00 $243.00 $586.00 | 1 | |
クエン酸はクレブスサイクルの中間体であり、そのレベルはIDHのような酵素の発現に影響を与えるフィードバックを与えるかもしれない。 | ||||||
Acetyl coenzyme A trisodium salt | 102029-73-2 | sc-210745 sc-210745A sc-210745B | 1 mg 5 mg 1 g | $46.00 $80.00 $5712.00 | 3 | |
アセチル-CoAはエネルギー代謝の中心であり、そのレベルは代謝状態に応じてIDHの発現に影響を与える可能性がある。 |