Ero1-Lβ Activators are a diverse array of chemical compounds that enhance the functional activity of Ero1-Lβ through their roles in maintaining the proper redox environment or acting as cofactors. Oxygen, as the ultimate electron acceptor in the oxidative protein folding pathway, is crucial for Ero1-Lβ's function in promoting disulfide bond formation. The redox balance necessary for Ero1-Lβ activity is further supported by Dithiothreitol (DTT) and N-acetyl-L-cysteine (NAC), which, through their roles in the redox cycle, maintain theProtein Name Activators are a diverse array of chemical compounds that enhance the functional activity of Protein Name through their roles in maintaining the proper redox environment or acting as cofactors. Oxygen, as the ultimate electron acceptor in the oxidative protein folding pathway, is crucial for Protein Name's function in promoting disulfide bond formation. The redox balance necessary for Protein Name activity is further supported by Dithiothreitol (DTT) and N-acetyl-L-cysteine (NAC), which, through their roles in the redox cycle, maintain the optimal conditions for Protein Name's catalytic functions. Additionally, Flavin adenine dinucleotide (FAD), as an essential cofactor, ensures that Protein Name is enzymatically active, while Glutathione disulfide (GSSG) directly engages with Protein Name to facilitate the transfer of disulfides to protein disulfide isomerase (PDI), enhancing Protein Name's role in disulfide bond formation.
Furthermore, the cellular concentration of calcium ions, which is modulated by Calcium ionophore (A23187), greatly influences the enzymatic efficiency of Protein Name within the endoplasmic reticulum. Biotin, Alpha-lipoic acid, Vitamin C, and Vitamin E contribute to the biochemical milieu that supports Protein Name's activity, by either acting as cofactors or by maintaining the antioxidant capacity that indirectly upholds the necessary oxidative state. Copper (II) sulfate also plays a role by participating in electron transfer reactions that can facilitate the correct redox conditions for Protein Name to operate optimally. Collectively, these chemical activators ensure the continuous and enhanced functionality of Protein Name, which is central to its role in cellular processes.
SEE ALSO...
| Product Name | CAS # | Catalog # | QUANTITY | Price | Citations | RATING |
|---|---|---|---|---|---|---|
Glutathione, oxidized | 27025-41-8 | sc-29093B sc-29093A sc-29093 | 250 mg 1 g 5 g | $57.00 $82.00 $270.00 | 3 | |
GSSG serves as an oxidized substrate for Ero1-Lβ, which can transfer disulfides to protein disulfide isomerase (PDI), thus enhancing the catalytic formation of disulfide bonds by Ero1-Lβ. | ||||||
β-Nicotinamide adenine dinucleotide phosphate | 53-59-8 | sc-215560 sc-215560A | 100 mg 250 mg | $114.00 $198.00 | ||
Although NADPH is typically associated with reducing reactions, it is involved in the regeneration of glutathione, which can indirectly support the optimal oxidized environment for Ero1-Lβ activity. | ||||||
A23187 | 52665-69-7 | sc-3591 sc-3591B sc-3591A sc-3591C | 1 mg 5 mg 10 mg 25 mg | $54.00 $128.00 $199.00 $311.00 | 23 | |
The calcium ionophore A23187 increases cytosolic calcium levels, which are crucial for the proper functioning of the endoplasmic reticulum where Ero1-Lβ resides. Elevated calcium levels can enhance the enzymatic activity of Ero1-Lβ. | ||||||
D-(+)-Biotin | 58-85-5 | sc-204706 sc-204706A sc-204706B | 1 g 5 g 25 g | $40.00 $105.00 $326.00 | 1 | |
Biotin, as a cofactor, can assist in the post-translational modifications of proteins within the endoplasmic reticulum, potentially creating an environment that favors the disulfide bond-forming activity of Ero1-Lβ. | ||||||
N-Acetyl-L-cysteine | 616-91-1 | sc-202232 sc-202232A sc-202232C sc-202232B | 5 g 25 g 1 kg 100 g | $33.00 $73.00 $265.00 $112.00 | 34 | |
NAC can act as a precursor for glutathione synthesis, thereby indirectly supporting the redox balance in the endoplasmic reticulum and enhancing Ero1-Lβ activity. | ||||||
α-Lipoic Acid | 1077-28-7 | sc-202032 sc-202032A sc-202032B sc-202032C sc-202032D | 5 g 10 g 250 g 500 g 1 kg | $68.00 $120.00 $208.00 $373.00 $702.00 | 3 | |
Alpha-lipoic acid can recycle antioxidants such as vitamin C and glutathione, which may indirectly maintain the oxidative environment that Ero1-Lβ requires for optimal activity. | ||||||
L-Ascorbic acid, free acid | 50-81-7 | sc-202686 | 100 g | $45.00 | 5 | |
Vitamin C can regenerate oxidized glutathione and thus indirectly ensure the proper redox state for Ero1-Lβ activity within the endoplasmic reticulum. | ||||||
(+)-α-Tocopherol | 59-02-9 | sc-214454 sc-214454A sc-214454B | 10 g 25 g 100 g | $42.00 $61.00 $138.00 | ||
Vitamin E can maintain the redox state within the endoplasmic reticulum by acting as an antioxidant, which indirectly supports the oxidizing environment required for Ero1-Lβ function. | ||||||
Copper(II) sulfate | 7758-98-7 | sc-211133 sc-211133A sc-211133B | 100 g 500 g 1 kg | $45.00 $120.00 $185.00 | 3 | |
Copper ions can act as electron acceptors and are involved in redox reactions. They can indirectly facilitate the oxidative environment in the endoplasmic reticulum, supporting Ero1-Lβ activity. | ||||||