Z-FA-FMK is an irreversible inhibitor of cysteine proteases, such as cathepsin B, L, and S, that do not require a P1 Asp residue. The compound has also inhibitited papain and cruzain. Z-FA-FMK has been shown to selectively inhibit effector caspase-2, caspase-3, caspase-6, and caspase-7 without affecting initiator caspase-8 and caspase-10 while showing minimal toxicity to normal mammalian cells in vitro. Due to Z-FA-FMK's effector caspase specificity, the compound has been recorded to inhibit some forms of caspase mediated apoptosis. The compound has been observed to be an effective in time dependent inactivation of cathepsin B isozymes from a number of tissues. Studies show Cathepsin B-like activity plays a role in the cascade of proteolytic cartilage destruction. Z-FA-FMK is an inhibitor of cathepsin H.
1. Shaw, E., et al. 1981. Meth. Enzymol. 80: 820-826. PMID: 7043207
2. Smith, R.E., et al. 1988. Anticancer Res. 8: 525-529. PMID: 3178145
3. Van Noorden, C.J., et al. 1988. J. Rheumatol. 15: 1525-1535. PMID: 3204599
4. Brömme, D., et al. 1989. Biochem. J. 264: 475-481. PMID: 2604727
5. Ahmed, N.K., et al. 1992. Biochem. Pharmacol. 44: 1201-1207. PMID: 1417942
6. Harth, G., et al. 1993. Mol. Biochem. Parasitol. 58: 17-24. PMID: 8459830
7. McGrath, M.E., et al. 1995. J. Mol. Biol. 247: 251-259. PMID: 7707373
8. Lotem, J., et al. 1996. Proc. Natl. Acad. Sci. U.S.A. 93: 12507-12512. PMID: 8901612
9. Eichhold, T.H., et al. 1997. J Pharm Biomed Anal. 16: 459-467. PMID: 9589405
10. Schotte, P., et al. 2001. J. Biol. Chem. 276: 21153-21157. PMID: 11290751
11. Guo, M., et al. 2002. J. Biol. Chem. 277: 14829-14837. PMID: 11815600
12. Lopez-Hernandez, F.J., et al. 2003. Mol. Cancer Ther. 2: 255-263. PMID: 12657720
See how others have used Z-FA-FMK (CAS 197855-65-5). Click on the entry to view the PubMed entry .
PMID: 36156411 | Comparative study of cathepsin B-cleavable linkers for the optimal design of cathepsin B-specific doxorubicin prodrug nanoparticles for targeted cancer therapy. | Shim, N. et al. 2022. Biomaterials. 289: 121806.
PMID: 34165970 | Visible-Light-Triggered Prodrug Nanoparticles Combine Chemotherapy and Photodynamic Therapy to Potentiate Checkpoint Blockade Cancer Immunotherapy. | Choi, J. et al. 2021. ACS Nano.
PMID: 30720418 | Hazara nairovirus elicits differential induction of apoptosis and nucleocapsid protein cleavage in mammalian and tick cells. | Fuller, J. et al. 2019. J Gen Virol. 100: 392-402.
PMID: 26639105 | E11/Podoplanin Protein Stabilization Through Inhibition of the Proteasome Promotes Osteocyte Differentiation in Murine in Vitro Models. | Staines, KA. et al. 2016. J. Cell. Physiol. 231: 1392-404.
PMID: 27084336 | MicroRNA-7 targets Nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson's disease. | Zhou, Y. et al. 2016. Mol Neurodegener. 11: 28.
PMID: 28105029 | Lysosome-Dependent Activation of Human Dendritic Cells by the Vaccine Adjuvant QS-21. | Welsby, I. et al. 2016. Front Immunol. 7: 663.
PMID: 25092290 | LL-37 peptide enhancement of signal transduction by Toll-like receptor 3 is regulated by pH: identification of a peptide antagonist of LL-37. | Singh, D. et al. 2014. The Journal of biological chemistry. 289: 27614-24.
PMID: 24085292 | Long-term incubation with proteasome inhibitors (PIs) induces IκBα degradation via the lysosomal pathway in an IκB kinase (IKK)-dependent and IKK-independent manner. | Lee, KH. et al. 2013. J. Biol. Chem. 288: 32777-86.
PMID: 23812099 | CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. | Sheedy, FJ. et al. 2013. Nat Immunol. 14: 812-20.
PMID: 22865861 | Proteolytic processing regulates Toll-like receptor 3 stability and endosomal localization. | Qi, R. et al. 2012. J. Biol. Chem. 287: 32617-29.